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groupe. Cette question fera l'objet d'un autre m6moire 
(Billiet, Sayari & Zarrouk, 1978). 
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Direct methods of phase determination frequently make use of the triplet formula, tp(h) ~_ (rp(h - k) + rp(k)). 
This expression is derived by a probability approach which has no easily visualized connection with an actual 
crystal structure. In this paper the positions of electron-dense planes are related to the positions of peaks in 
the two-term E map of E(k) and E(h - k). The connection between ~0(h) and [¢p(k) + ~0(h - k)] is then easily 
visualized. A consideration of spurious peaks in the two-term E map suggests that the probability that ~o(--h) 
+ tp(k) + ~0(h - k) sums to zero is increased by a small value of IE(2k - h)/E(h)l and may be decreased by a 
large value of this ratio. The relation between symmetry and aberrancy is briefly considered. 

I. Introduction 

The major phase-determining equation of direct 
methods is 

~p(h)-~ (~p(h--k) + ¢p(k))Kr (i) 

(Katie & Karle, 1966) where Kr denotes that the 
average is restricted to the quasi-normalized structure 
factors E(k), E(h  -- k) (Karle & Hauptman, 1959) with 
large magnitudes. (1), the triplet formula, is valid for 
both centrosymmetric and non-centrosymmetric struc- 
tures. It can be obtained from Sayre's (1952) equation. 

The mathematical derivation of (1) offers little 
insight into its physical significance. In this paper an 
intuitive approach is developed by considering the 
relation between the positions of atoms and the 

positions of peaks in the two-term Fourier synthesis of 
E(k) and E ( h - - k ) .  This two-term E map shows 
maximum amplitude of oscillation on the h and 
( 2 k -  h) planes; high atom density on at least one of 
these planes is inferred. 

With some simple structures as examples, it is argued 
that the value of IE(2k -- h)/E(h)l is an aid to deciding 
if the triple 

tp(--h) + ~p(k) + ~p(h- k) (2) 

is normal (i.e. sums to near zero) or aberrant (i.e. sums 
to near n). This approach is used to identify the 
systematically aberrant triples of the benzene ring 
(Thiessen & Busing, 1974). 

The relation between aberrancy and symmetry is 
briefly considered. 
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II. Visualizing the triplet formula 

We shall use simple physical intuition to answer the 
question: given large values of IE(k)l, I E ( h - - k ) l ,  
IE(h)l and given ~0(k), ~0(h -- k) what is the most likely 
value of  (p(h)? 

Let us visualize the real part of the two-term Fourier 
synthesis of E(k)  and E(h  - k) to give 

IE(K)I cos [--27rr.k + ¢p(k)] 

+ IE(h - -  k)l c o s [ - - 2 7 a ' . ( h -  k) + (p(h-- k)]. (3) 

On any plane in space the value of this sum 
oscillates. The amplitude of oscillation is a maximum 
on the planes defined by (4) and (5) since on these 
planes the maxima of the first and second terms of (3) 
coincide, and similarly for minima. 

211~z- 27rr.k + (p(k) = 2 h r . ( h -  k ) -  ( p ( h -  k) (4) 

2127r-  27tr.k + (p(k) = - 2 h r .  ( h -  k) + (p (h -  k) (5) 

(l 1, l 2 are integers). 
The planes defined by (4) and (5) will be called 

respectively A and B planes. If we regard (3) as 
representing a two-term E map, then the most likely 
position for atoms is on the A or B planes, since the 
amplitude of electron-density fluctuations in a real 
structure is greatest on atom-dense planes. 

Initially we consider the A planes and write (4) as 

2~r. h = (p(k) + (p(h -- k) + 2l I ~r. (6) 

(6) states that when the tip of the vector r lies in an A 
plane, the product r . h  is independent of r. Hence h 
must be perpendicular to the A planes which have a 
spacing 1/Ihl. If the phase of E(h)  is dominated by 
large contributions from the atom-dense A planes, then 
the peaks of the h component in the Fourier synthesis, 
which lie in the planes 

2m 37r-  2 m .  h + (p(h) = 0 (m 3 an integer) (7) 

are likely to be close,to the A planes. If the planes 
represented by (6) and (7) coincide, then we obtain 

qT(h) _ qT(k) + qT(h- k) (8) 

which is a term of (1). Physically, (1) corresponds to 
the statement that the centre of gravity of the family of 
A planes generated by varying K r  is the most plausible 
position for the plane (7). 

In summary,  the two-term Fourier synthesis (3) 
implies that the plane wavefronts 

2zrm 1 - 2m.  k + tp(k) = 0 (9a) 

2~zm 2 -- 2hr. (h -- k) + (o(h - k) = 0 (9b) 

2x'm 3 -- 27rr. h + ~p(h)= 0 (9c) 

(m 1, m 2, m 3 are integers) should all intersect in a single 
line through the point D (Fig. 1), and thus (9) can be 

solved for the unknown ~0(h). The triplet formula (1) 
follows. Points D, D' ,  V, V' in Fig. 1 correspond to 
different values of m l, m 2, m 3. 

The case of h and k parallel [say Lk = N(h  -- k) 
where L and N are integers] is slightly different. (9) are 
not now linearly independent. (9a) and (9b) give 

LqT(k) = N(p(h -- k). (10) 

If h = 2k then (10) holds by definition and all the k 
planes coincide with the (h -- k) planes. If h 4: 2k and it 
is found that q~(k) and q~(h -- k) do not satisfy (10), then 
the premises on which (9) are based are contradicted, 
and there seems to be no physical reason why q~(h) 
should satisfy (8). 

(6) to (9) were obtained from (4), which defines the A 
planes. We can follow a similar argument based on (5) 
which defines the B planes. This is equivalent to 
replacing ( h - k )  and h by - - ( h - - k )  and ( 2 k - - h )  
respectively in (6) to (9). We then obtain 

qT(2k -- h) ~_ (p(k) -- (p(h -- k) (1 1) 

in place of (8). The B planes are perpendicular to 
( 2 k -  h) with a spacing 1/l(2k - h)l. 

The two-term E map represented by (3) shows 
maximum fluctuation on the A and B planes, two quite 
different sets of planes. The large magnitudes of E(k)  
and E ( h -  k) could be due to high atom density on the 
A planes, or the B planes or both. We would expect (8) 
to hold in the first case, (11) in the second, and both (8) 
and (11) in the third. Since we do not know whether the 
A planes or the B planes are the more atom dense, we 
do not know whether (8) or (11) is the more likely to be 
valid. This ambiguity is further discussed below. 

III. The triplet formula for planar structures 

In this section we obtain the exact relation between 
~0(k), ¢ ( h - - k )  and ~0(h) for some simple planar 
structures. 

/ 

. 2k-h  

.... / "  I ~# .  / _.-->t 

/ ...... .. / ...... . 

/ / '-. 

Fig. 1. The crests of the h, k, ( h - k )  and ( 2 k - h )  Fourier 
components are shown. These plane wavefronts are all perpen- 
dicular to the plane of the paper. The h and ( 2 k -  h) waves are 
positioned so that (8) and (1 I) are valid respectively. 
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Let us recall that the A and B planes were defined by 
the positions of peaks in the Fourier synthesis; we then 
hypothesized that these peaks indicated the presence of 
atoms. We now postulate a structure in which all atoms 
lie on planes (C planes) perpendicular to h with an 
interplanar spacing 1/Ihl. From this definition the C 
planes are parallel to the A planes but not necessarily 
coincident with them. The position vectors rj of the n 
atoms in the unit cell can be written 

rj = Rj + t + mj u (n >_ j >_ 1) (mj  a n  integer) (12) 

where t and u are parallel to h and lul = l /Ihl .  Here t is 
a vector from the cell origin to the nearest C plane; 
(t + mju) is a vector to the C plane carrying the j th  
atom and Rj is a vector lying in this C plane. 

Hence 

h. R j ~ 0  ( r />  j >  1)'[ 
and / (13) 

u . h  = 1 .  

We write the quasi-normalized structure factors (Karle 
& Hauptman, 1959) as 

E(k)=o~-: 1/2 ~ Zjexp(2rcik.rj) (14) 
j = l  

where (72 = Y~__ ~ Z 2 and Z j  is the atomic number of the 
j th  atom. We obtain, from (13), 

E ( k ) =  cr~ v2 ~ Zjexp[2zc&.(Rj + t + mju)] (15) 
j = l  

n 

E ( h -  k) = (721/2 exp(2nih, t) ~ Z: 
j = l  

× exp [-2nik.  (Rj + t + mj u)l (16) 

n 

E(h)=cr2~/2exp(2nih.t) ~ Zj. (17) 
j = l  

Thus E ( k ) E ( h -  k) = erE(h) where ct is a real number, 
and so 

(p(k) + (p(h -- k) = (p(h). (18) 

In this case (18) holds exactly, irrespective of the 
actual positions of atoms on the C planes, even if E(k) 
and E(h - k) have small magnitudes (postulate I). It is 
easily shown that (18) is also exact if all atoms lie on 
planes perpendicular to p with a separation 1/Ipl for 
p---- k o r  p = ( h -  k). 

From (15)-(17) we note that, when all atoms lie on 
C planes, 

IE(k)l = IE(h -- k)l _< IE(h)l = E(000). (19) 

In this example we have assumed that all atoms lie in 
planes perpendicular to h with an interplanar spacing 
1/Ihl, yet the two-term Fourier synthesis of E(k) and 
E ( h - - k )  shows equal (maximum) amplitudes of 
oscillation on the two families of planes defined by (4) 

and (5). The oscillations on the B planes defined by (5) 
are artefacts due to the small number of terms in the 
Fourier synthesis. Thus an ambiguity is introduced. 
Considering only the two-term E map, one might be 
tempted to assume that one could determine cp(h) and 
cp(2k-h)  with equal certainty, from (18) and (11) 
respectively. However, although (18) is exact for this 
example, (11) is not. We will verify this by means of a 
two-atom model structure. 

I V . I .  T h e  t w o - a t o m  structure  

The model consists of two atoms lying in a C plane, a 
simple example of the planar structure discussed in § 
III. By varying the separation of the atoms we can 
determine the values of the sums 

(p(--h) + (p(k) + (p (h-  k) (20) 
and 

cp(2k-- h) + ~p(--k) + cp(h-- k) (21) 

for all directions of k and all magnitudes of h and k. 
Hence we can investigate the validity of (8) and (11) for 
all configurations of the two-atom structure. 

The two moveable point atoms H, H '  are positioned 
on the line GG' which lies in a C plane. GG'  is not 
perpendicular to k; otherwise the direction of GG '  in 
the C plane is arbitrary. For a given k, I GG'  I is chosen 
such that 

k. GC;' -- 1. 

H and H '  are constrained to be equidistant from M, the 
midpoint of GG'. The Fourier transform of the 
structure relative to an origin at M is 

T(k) = cos (2zck. MI4) + cos (2z~k. MI4'). 

Since GG'  is perpendicular to h we have 

k.  G G '  = - ( I t  - k ) .  GCJ' = 1 
and / (22) 

._¢ 

It. G G '  = 0. 

Using (22) we obtain 

T ( h - -  k) = 2 cos (2xMH/GG' )=  T(k) (23) 

T ( h ) =  2 (24) 

T ( 2 k -  h ) =  2 cos(4xMH/GG') .  (25) 
Hence 

q~(k) + cp(h- k ) =  0 = q~(h) (modulo 2zc) (26) 

for all values of MH. This is simply a restatement of 
(18), since the two atoms lie in a C plane. 

From (23), (25) we have 

¢~(2k- h) + ~ (--k) + 9(h - k) 

= 0 (0 < M H / G G '  < ~ and ~ < M H / G G '  < ~) 

= 7~ Q < MH/GG'  < ~). (27) 
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Thus the triplet (21) is normal for only half the 
possible positions of H and H'  on the line GG', 
whereas the triplet (20) is normal for all positions of H 
and H '  on GG'. Fig. 2(a)-(d) shows the positions of 
the plane wavefronts in the four cases represented by 
(27). The plane wavefronts of the Fourier components 
of h, k and (h - k) intersect in a line perpendicular to 
the plane of the paper in Fig. 2(a)-(d), whereas the 
( 2 k -  h), k, (h - k) components have a common line of 
intersection only in Fig. 2(a)-(b). Hence Fig. 2(a)-(b) 
and (c)-(d) show respectively the normal and aberrant 
cases of the triplet (21). This result confirms that the 
two-term E map (3) is indeed ambiguous. If one had 
been guided only by this E map, one would have 
concluded that (8) and (11) were equally reliable. 

IV.2. Acceptance criteria 

Various criteria have been adopted to evaluate the 
reliability of a single phase-determining triplet (Karle & 

\, \ 

(a) 

' \  \ ,  °' 
• i H 

o/ 

'\, / 

(e) 

% 
/ i'",~~'\ : 

i \ \  , ', ~.y ', 

(b) ~ '  'x" 

II \ M \ 

(d) 

- - h  . . . . . . . . .  k - - - - - - h - k  . . . .  2k -h  

Fig. 2. The crests of  the h, k, ( h - k )  and ( 2 k - h )  Fourier 
components  for the two-atom model. The atoms H, H '  lie on the 
dense parts of  the line GG'. MH/GG' is in the range (a) 0 to / (b) 

to ½ (c) ~ to 1 (d) ¼ to ]. The triplet (20) is normal for (a)-(d) 
whereas (2 l) is normal for (a)-(b) and aberrant for (c)-(d). 

Karle, 1966). One criterion sets a lower limit on the IEI 
values of each contributor, while another sets a lower 
limit on the product IE(h)E(k)E(h--k) l  for the 
contributors. Using the latter criterion, let us require 
that 

IT(h) T(k) T(h - k ) l  > 1.0 (28) 

for (8) to be accepted, and 

I T ( 2 k - - h ) T ( k ) T ( h - k ) l  > 1.0 (29) 

for (11) to be accepted. It is easily shown that, for 1 < 
MH/GG' < ~, I T ( 2 k - h ) T ( k ) T ( h - k ) l  < 1.0. Hence 
with these criteria, no incorrect phase predictions will 
be made. ~0(h) is predicted for 0 _< MH/GG' s O. 192, 
and 0.308 s MH/GG' < 0.5, which represents 77% of 
the possible configurations of the two-atom system. 

Additional criteria can be used to extend the range of 
MH/GG' over which phases are correctly predicted. 
Let us accept (8) if either (28) or (30) is satisfied, and 
accept (11) if either (29) or (31) is satisfied: 

I T ( 2 k -  h)/T(h)l < 0.95 

and IT(h) T(k) T(h--  k)l > 0.2 (30) 

IT(h)/T(2k-- h)l < 0.95 

and IT(2k-- h)T(k) T(h--  k)l > 0.2. (31) 

Again no false phase predictions are made. Using the 
criteria (28)-(31), we can correctly predict tp(h)for 0 _< 
MH/GG' s 0.225 which represents 90% of the 
possible configurations of the two-atom model, a 
considerable improvement on the criteria (28)-(29). 
The range of MH/GG' over which ~p(2k--h) is 
predicted is unchanged since (31) is not satisfied. 

IV.3. Physical significance of the ratio 
IE(2k- h)/E(h)l 

Application of the criteria (30) and (31) to the two- 
atom model has shown that the ratio IE(2k-- h)/E(h)l 
is some guide to the validity of a single term [equation 
(8)] of the triplet formula. We now consider the 
physical significance of IE(2k--h)/E(h)l .  In the two- 
atom model, both atoms lie in the same A plane. When 
the spacing of the atoms is such that each lies close 
to a B plane then I H l ] ' . ( 2k - -h ) l  ~ 1 and 
I T(2k - h)/T(h)l _~ 1. When the separation of the two 
atoms is reduced so that IHH' . ( 2 k -  h)l ~_ ½ then the 
atom density of the B planes is a minimum and from 
(24), (25) we have IT(2k-h ) /T(h ) l  ,~ 0. Hence the 
ratio I T(2k - h)/T(h)l can be regarded as a measure of 
the relative atom densities of the B and A planes. In the 
extreme case where all atoms lie in A planes, postulate I 
states that (8) will be exact even if IT(h) T(k) T(h -- k)l 
is not large. Thus (30) is equivalent to the statement 
that provided IT(h) T ( k ) T ( h -  k)l is not too small, 
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(20) is likely to be normal if the A planes are more atom 
dense than the B planes. 

The planar model used in § II to obtain (18) requires 
only one set of atom-dense planes. To require that 
I E ( 2 k -  h)/E(h)l be small for every permutation of the 
labels h, k, (h - k) is to require three sets of atom-dense 
planes. Thus the relevant value of I E ( 2 k -  h)/E(h)l to 
be tested in (30) is the smallest obtained by inter- 
changing the labels h, k, ( h -  k) among the three 
members of a given triplet. 

be large as the 2k and (2k -- 2h) planes are atom dense, 
and so the triplets 

qT(h) + qT(2k- h) + fT(-2k) 

qT(h) + ~p(h- 2k) + ~o(2k- 2h) 

are both likely to be normal. These triplets could be 
used to determine ~0(h) and ~o(2k - h). 

Vl. Aberrant triples and the benzene transform 

V. Other model structures 

Let us generalize from the two-atom structure to more 
realistic structures, with the following examples. 

Case 1. Consider a structure in which atoms are 
fairly uniformly distributed over the C planes. IE(k)l, 
I E ( h - k ) l  and I E ( 2 k - h ) l  will be about unity 
[equation (14)1 since the phases (2/rk.rj) will be 
random. IE(h)l will be large [equation (17)] since the C 
planes are atom dense. By postulate I, (18) is exact in 
this situation. If we consider only the separate 
magnitudes of E(k),  E ( h - - k ) ,  E(h)  we would not 
expect (8) to give a reliable estimate of ~o(h). However, 
the small value of IE(2k - h)/E(h)l suggests that the A 
planes are far more likely to be atom dense than the B 
planes, and so (8) is likely to be more reliable than one 
would expect from a consideration of IE(k)l, 
I E ( h - k ) l ,  IE(h)l alone. 

This reasoning can also be applied in reverse: a small 
value of I E ( 2 k - - h ) / E ( h ) l  will reduce the probability 
that the triplet ~0(2k- h) + ~o(h - k) + ~0(--k) is normal 
even though, at first glance, E(h)  seems unconnected 
with this triplet. If a data set contains a few excep- 
tionally large E values, the triplets whose probability is 
reduced by them should be identified. 

Case 2. If the magnitudes of E(h), E (2k  -- h), E(k),  
E ( h -  k) are all large, then the A and B planes are 
probably both atom dense. Atoms could be concen- 
trated around lines perpendicular to the paper through 
points D, D' ,  [I, F '  (Fig. 1). (8) and (11) are likely to 
give reliable estimates of ~o(h) and ~ ( 2 k -  h) respec- 
tively. 

Case 3. If atoms are concentrated about lines 
through D and T (Fig. 1) perpendicular to the plane of 
the paper then IE(h)l and I E ( 2 k - h ) l  will be large 
(since the A and B planes are both atom dense). IE(k)l 
and I E ( h - - k ) l  will be small since the contributions 
from the atoms at D destructively interfere with those 
from T. The two-atom model illustrates this case when 
MH/GG' ~ 0.25 and the very small values of 
IT(h) T(k) T(h  -- k)l and I T ( 2 k - -  h)T(k)  T ( h -  k)l 
show that it is unlikely that (20) and (21) will both be 
normal. Criteria analogous to (30) and (31) can be used 
to decide whether either (20) or (21) is likely to be 
normal. However, IE(2k)l and IE(2k--211)1 will both 

Let us consider the reliability of individual terms of  the 
triplet formula when applied to the Fourier transform of 
a benzene ring. Actual cell dimensions are not 
important,  so we can discuss reflections with non- 
integral indices. 

Thiessen & Busing (1974) have pointed out that 
certain triplets of the benzene transform sum to u, and 
are therefore aberrant. They argued that in certain 
structures containing one or several six-membered rings 
certain triplets for the whole structure will be 
dominated by the corresponding triplets for the six- 
membered rings and so will be aberrant if the six- 
membered-ring triplet is aberrant. 

In Fig. 3, the coordinates (relative to rectangular 
axes) of six point scatterers representing the C atoms of 
a benzene ring lying in the z = 0 plane are (+ 1,0), 
(1/2,+v/3/2),  ( -1 /2 ,+x /3 /2 ) .  The Fourier transform 
relative to an origin at (0,0) is 

"q/ '\!/ 

, ;/)k, /i'\ 
/ '\i/ 

/::\, /\, /::\ 
\ %  \ , / }  

(a) 

/ 

J 
. . . e  . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . .  . . " :_ :_  . . . . .  

(c) 

. - - , , . .  

J 

J l  ~ 

(b) 

) X  

(d) 

- - h  . . . .  k ------h-k .......... 2k-h 
Fig. 3. Six point C atoms of the benzene ring lie at (+1,0), 

(+½,+x/3/2). (a) to (d) show the crests of the h, k, ( h -  k) and 
(2k-h)  Fourier plane waves for triplets (36) to (39) respec- 
tively. 
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n 

T(h) = Z cos (2nh.r:) 
j=l 

= 2 cos (2nh,) + 4 cos (nh,) cos (nv/3h2) (32) 

where h = (hl,h2,h3). Since the atoms lie in the z = 0 
plane the value of the transform is independent of h 3. 

Hence T ( h ) =  T(h.h2,h3) = T(h.h2,0 ) - T(h~,h2) 
where (hi,h2) indicates the two-dimensional vector 
(h~,h2,0). From (14) and (32) the E values are given by 

E(h) = T(h)/v/6. (33) 

A section through the transform parallel to the z = 0 
plane contains positive and negative extrema, with 
values of +6 and - 3  respectively. Positive extrema 
exist at h = (0,0); (0,±2/v/3); (1,± l/v/3); ( - 1 , ±  l/v/3 ) 
while negative extrema are found at h = (±2/3,0); 
(1/3,+1/v/3); ( -1/3 ,±1/v/3) .  We initially consider 
triplets whose vectors h, k, ( h -  k) end in extrema of 
the transform and ask whether the value of 
IE(2k -- h)/E(h)l will enable us to decide if a triplet h, 
k, (h - k) is normal or aberrant. 

Before any triplet is accepted as normal it must be 
tested against a criterion which only accepts triplets 
with a high probability of normality. (34) is a common 
acceptance criterion (Karle & Karle, 1966); (35) is 
rather arbitrarily constructed to accept lower E values 
provided that the ratio I E ( 2 k -  h)/E(h)l is small for 
some permutation of the labels h, k, ( h -  k) among the 
members of the triplet. 

IE(h)l, IE(k)l, I E ( h - k ) l  > 1.4 (34) 

IE(h)l, IE(k)l, IE(h--k)l > 1.0 

and I E ( 2 k - h ) / E ( h ) l  s 1.0. (35) 

(35) is analogous to (30) used for the two-atom model. 
Both criteria are based on the hypothesis that tp(-h) ÷ 
tp(k) + ¢p(h- k) is more likely to be normal if the h 
planes are more atom dense than the (2k - h) planes. 

- -  4- - - + - 

+V_ ÷_ 
+ - 1 -  + + - 1 -  + 

- -  ÷ - -  - -  + - -  

(a) (b) 
~ X  

- + - _ + - -  

+ - - "+ + - :  - I -  

-+k - -  _ + - -  ÷ 

(c) (d) 
Fig. 4. Four triplets of vectors which sum to zero and which end in 

extrema of the benzene transform (Thiessen & Busing, 1974). 
(a)-(b) show normal triplets and (c)-(d) show aberrant ones. (a) 
to (at) correspond to triplets (36) to (39) respectively. 

We apply the criteria (34) and (35) to the triplets 
(36) to (39) which correspond to Thiessen & Busing's 
(1974) examples of triplets of vectors which sum to 
zero. These triplets are illustrated in Fig. 4(a)-(d),  
together with the positions of extrema of the transform. 
In each of the triplets (36)-(39) the first, second and 
third terms represent - h ,  k and (h - k) respectively. 

~0(0,-2/x/3) + ¢p(1,1/v/3) + ¢p(-1,1/v/3) (36) 

~0(0,-2/x/3) + q~(1/3,1/v/3) + ~0(-1/3,1/v/3) (37) 

~0(-2/3,0) + ~0(1/3,1/v/3 ) + :p(1/3,-1/v/3 ) (38) 

¢p(-2/3,-2/x/'3) + ~p(1/a,1/g'3) + ~0(1/3,1/v/3).(39 ) 

The E values relating to (36) to (39) are given by 
(32) and (33). 

IE(±2/3,0)1 = 

and 

IE(1/3,_ 1/V/3)l = IE(--1/3,+ 1/V/3)l 

IE(2/3,± 2/V/3)I = IE(-2/3 ,+ 2/V/3)I 

V/6/2 

I E ( 0 , 0 ) ~  = IE(0,+2/V/3)I = IE(1,_ 1/V/3)l 

I E ( -  1,+ 1/V/3)I = V/6. 

We now show in a pictorial manner, using Fig. 3, the 
relation between the ratio I E ( 2 k - h ) / E ( h ) l  and the 
relative atom densities of the (2k - h) and (h) planes. 

The triplet (36) satisfies both (34) and (35). The ratio 
I E ( 2 k -  h)/E(h)l equals 1.0 for all permutations of the 
labels - h ,  k, ( h - k )  among the members of (36). 
Hence we expect (36) to be normal. This triplet is an 
example of case 2, § V. Fig. 3(a) shows that the h, k, 
(h - k) and (2k - h) planes are all atom dense. 

The triplet (37) does not satisfy (34) but does satisfy 
(35), since IE(2k - h)/E(h)l equals 1.0 or 0.5 depend- 
ing on the permutation of the labels - h ,  k, ( h -  k) 
among the members of the triplet. Hence we expect 
(37) to be normal. This triplet is an example of case 1, § 
V. Putting h = (0,2/v/3) and k -- (1/3,1/x/3), we see 
from Fig. 3(b) that the h planes are more atom dense 
than the (2k - h) planes. 

The triplets (38) and (39) do not satisfy either (34) or 
(35). I E ( 2 k -  h)/E(h)l equals 2.0 for all permutations 
of  the labels - h ,  k, (h - k) among the members of (38) 
and (39). Hence we would expect that (38) and (39) are 
aberrant. Fig. 3(c) and (d) shows that the (2k - -h )  
planes are more atom dense than the h planes for both 
of these triplets. For the triplet (39), (2k -- h) = (0,0). 

From a knowledge of the magnitudes of the E values 
alone, we have predicted that the triplets (36)-(37) are 
normal, and (38)-(39) are aberrant. Fig. 4(a)-(d)  
shows that these predictions are correct and verify that 
the ratio I E ( 2 k - h ) / E ( h ) l  can be a guide to the 
validity of (8). Fig. 3 illustrates the physical signi- 
ficance of IE(2k- -h) /E(h) l  in terms of the relative 
atom densities of the (2k -- h) and h planes. 
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VII. Benzene ring as a planar structure 

The benzene ring (Fig. 3) can be regarded as a planar 
structure in the sense that all atoms lie in h planes with 
an interplanar spacing 1/Ihl where h = (0,+2/v/3) or 
(1,+ l/v/3 ) or ( - 1 , +  l/x/3 ). Using postulate I, § III, we 
can say immediately that when h equals one of these 
vectors, then all triplets (o(-h) + (o(k) + ~p(h - k) will be 
normal, irrespective of the magnitude of E(k) or 
E(h -- k). This result applies to any vector h which ends 
at a positive extremum of the benzene transform, even 
if k and (h - k) do not end in extrema. 

VIII. Aberrancy and symmetry 

Space-group symmetry can give rise to aberrancy in the 
same way as molecular symmetry. Consider a P6 
structure with a unique atom at (1/3,0,z). The six-fold 
axis generates a six-membered ring. The vectors - h ,  k, 
( h - - k )  which have the same relation to this six- 
membered ring as the vectors of the triplet (37) had to 
the benzene ring may be written, with hexagonal 
indexing, 

(0,--3); (1,1); (--1,2). 

Hence the triple analogous to (37) is 

tp(0,-3,-h3) + tp(1,1,k3) + tp(-1, 2, h 3 - k3) (40) 

where h 3, k 3 are arbitrary since all atoms are in the z = 
0 plane. The triplet (40) is normal, as it represents the 
same physical situation as (37). Similarly the triplet 

tp(-2,1,-h3) + tp(1, l,k3) + tp(1,-2,  h 3 - k 3 )  (41) 

with vectors defined relative to the P6 structure, is 
physically the same as the triplet (38). Thus (41) is 
aberrant. Depending on the actual position of atoms in 
the cell, a high proportion of triplets for a hexagonal 
structure could be aberrant. 

In §III  we showed that if a Fourier plane wave h can 
be positioned (by suitable choice of phase) so that all 

atoms of the structure lie on the peaks of the wave, then 
the triplet must be normal. Using (17), (19), we can 
make an equivalent statement: for a structure of 
identical atoms, any triplet containing a vector h such 
that 

aE(h)l = E(O00) 

must be normal. We apply this criterion to two and 
three-fold axes. 

Two two-fold rotation axes intersecting at right 
angles generate four atoms at the corners of a 
rectangle. For all extrema b of the transform, I T(h)l = 
T(000) = 4. Hence any triplet involving a vector ending 
at an extremum of the transform must be normal. This 
is also true for a single two-fold rotation axis (§ IV). 

The transform of three atoms at the corners of an 
equilateral triangle contains two kinds of extrema, with 
magnitudes 3 and 1, the phases of the former being y or 
(y+  n) and of the latter y or (y+  n) or (y +_ n/2). y 
depends on the choice of origin. For the larger extrema 
I T(h)l = T(O00) and so any triplets involving one of 
them will be normal. As for the benzene transform, 
some triplets involving only the smaller extrema are 
aberrant. However, the magnitudes of the smaller 
extrema are only T(O00)/3 compared with T(000)/2 
for the benzene transform, and so they are less likely to 
satisfy an acceptance criterion based on the magnitudes 
of the E values. 

These results suggest that the members of aberrant 
triplets do not end in extrema of the transform unless 
three or six-fold symmetry is present. 
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